A A O A 00

WO 01/86443 Al

{12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
Intcrnational Burcau

(43) International Publication Date
15 November 2001 (15.11.2001)

PCT

O A O O A

(10) International Publication Number

WO 01/86443 Al

(51) International Patent Classification’: GO6F 11/00

(21) International Application Number: PCT/US01/14557

(22) International Filing Date: 7 May 2001 (07.05.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/202,298 5 May 2000 (05.05.2000) US
60/202,299 5 May 2000 (05.05.2000) US
60/202,296 5 May 2000 (05.05.2000) US

(71) Applicant (for all designated States except US):
APRISMA MANAGEMENT TECHNOLOGIES,
INC. [US/US]; 121 Technology Drive, Durham, NH
03824 (US).

(72) lnventors; and

(75) lnventors/Applicants (for US only): BUIA, Christopher,
A. [US/US]; 10 Dean Drive, Dover, NH 03820 (US).
PANTELIS, Thomas, S. {US/US]; 603 Springbrook
Circle, Portsmouth, NH 03801 (US). TAYLOR, David,
K. [US/US]; 9 Willey Road, Durham, NI 03824 (US).
BALL, Scott {US/US]; 35 Johnson Drive, Newmarket,
NH 03857 (US). ROCKWELL, Nathaniel, J. [US/US};
444 Chester Street, Chester, NH 03036 (US).

(74) Agent: ZITKOVSKY, Ivan, D.; 6 Freeman Circle, Lex-

ington, MA 02421-7713 (US).

(81) Designated States (national); AU, CA, US.

(84) Designated States (regional): European patent (AT, BE,
Cl, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
with international search report

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR MANAGING AND ANALYSING FAULTS IN COMPUTER NETWORKS

100
101 ™~

140

(57) Abstract: A system (100)for analyzing a
fault includes a fault object factory (110) con-
structed and arranged to receive fault data and

FAULT DIAGNOSIS ACCESSES DATA

FAULT REPOSITORY

create a fault object (112), and a fault diagno-

ENGINE INSERTS FAULT sis analysis engine (101) constructed and ar-
OBJECTS ranged to perform root cause analysis of the
fault object.
TRIGGERS ACCESSES
HANDLER DATA

ADDS NEW FAULT {

OBJECTS TO 3
FAULT HANDLER
| _SENDS DATA
— FOR NEW FAULT
TESTER
FAULT OBJECT 152"
FACTORY
110 DIAGNOSER
154"
SENDS DATA FOR
NEW FAULT \
150
—
[
DETECTOR

130

WO 01/86443 A1 (NBUINBAAN SO0 AR AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

SYSTEMS AND METHODS FOR MANAGING AND ANALYSiNG
FAULTS IN COMPUTER NETWORKS

This application claims priority from -U.S.
Provisional Application 60/202,296, entitled ~“Construction
of a Very Rich, Multi-layer Topological Model of a Computer
Network for Purposes of Fault Diagnosis,'' filed on May 5,
2000, and claims priority from U.S. Provisional Application
60/202,299, entitled “"A method for diagnosing faults in
large multilayered environments guided by path and
dependency analysis of the modeled system,'' filed on May 5,
2000, and claims priority from U.S. Provisional Application
60/202,298, filed on May 5, 2000, entitled ““Method and
apparatus for performing integrated computer network,
system, and application fault management,'' all of which are

incorporated by reference in their entireties.

General Description

The present invention relates a fault management and
diagnosis system with a generic, easily extensible
architecture. |

The construction of computer networks started on a
large scale in the 1970's. Computer networks link personal
computers, workstations, servers, storage devices, printers
and other devices. Historically, wide area computer
networks (WANs) have enabled communications(across large
geographic areas, and local area networks (LANSs)
communications at individual locations. Both WANs and LANS
have enabled sharing of network applications such as
electronic mail, file transfer, host access and shared
databases. Purthermore, WANs and LANs have enabled
efficient transfer of information, and sharing of resources,
which in turn increased user productivity. Clearly,
communications networks have become vitally important for
businesses and individuals.

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

Communications networks usually transmit digital data
in frames or packets created according to predefined
protocols that define their format. Data frames include
headers (located at the beginning and containing addresses),
footers (located at the end of the frames), and data fields
that include the transmitted data bits (payload). Data
frames may have a fixed or variable length according to the
used protocol or network type.

A communications network transmits data from one end
station (i.e., a computer, workstation, server etc.) to
another using a hierarchy of protocol layers (i.e., layers
that are hierarchically stacked). In the communication
process, each layer in the source communicates with the
corresponding layer in the destination in accordance with a
protocol defining the rules of communication. This is
actually achieved by transferring information down from one
layer to another across the layer stack, transmitting across
a communication medium, and then transferring information
back up the successive protocol layers on the other end. To
facilitate better understanding, however, one can visualize
a protocol layer communicating with its counterparts at the
same layer level.

The open system interconnection (OSI) model has seven
layers that define the rules for transferring information
between the stations. A physical layer (Layer 1) is
responsible for the transmission of bit streams across a
particular physical transmission medium. This layer
involves a connection between two endpoints allowing
electrical signals to be exchanged between them.

A data link layer (Layer 2) is responsible for moving
information across a particular link by packaging raw bits
into logically structured packets or frames. Layer 2
ensures good transmission and correct delivery by checking
errors, re-transmitting as necessary, and attaching
appropriate addresses to the data sent across a physical

medium. If a destination computer does not send an

5

10

i5

20

25

30

35

WO 01/86443 PCT/US01/14557

acknowledgment of frame receipt, Layer 2 resends the frame.
The contention access methods (e.g., CSMA/CD, and Token
Passing) are regarded as Layer 2 activities. Layer 2 may
be further divided into two sub-layers: Logical Link Control
(LLC) and Media Access Control (MAC). The MAC sublayer
defines procedures the stations must follow to share the
1ink and controls access to the transmission link in an
orderly manner. The MAC sublayer defines a hardware or data
1ink address called a MAC address. The MAC address is
unique for each station so that multiple stations can share
the same medium and still uniquely identify each other. The
LLC sublayer manages communications between devices over a
single link of the communications network.

A network layer (Layer 3) is set up to route data from
one network user to another. Layer 3 is responsible for
establishing, maintaining, and terminating the network
connection between two users and for transferring data along
that connection. Layer 3 addresses, messages, and
determines the route along the network from the source to
the destination computer. Layer 3 manages traffic, such as
switching, routing, and controlling the congestion of data
transmissions.

A transport layer (Layer 4) is responsible for
providing data transfer between two users at an agreed level
of quality. When a connection is established, this layer is
responsible for selecting a particular quality of service
(QoS), for monitoring transmissions to ensure the selected
QoS, and for notifying the users if the QoS deteriorates.
Layer 4 also provides for error recognition and recovery,
repackaging of long messages into smaller frames of
information, and acknowledgments of receipt.

A session layer (Layer 5) focuses on providing services
used to organize communication and synchronize the dialog
that takes place between users and to manage the data
exchange. The primary concern of Layer 5 is controlling

when users can send and receive concurrently or alternately.

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

A presentation layer (Layer 6) is responsible for the
presentation of information in a way that is meaningful to
network users. This may include character code
transmission, data conversion, or data compression and
expansion.

Layer 6 translates data from both Layer 5 and from
Layer 7 into an intermediate format and provides data
encryption and compression services. Layer 7 is an
application layer that provides means for application
processes to access the system interconnection facilities in
order to exchange information. This includes sexrvices used
to establish and terminate the connections between users and-
to monitor and manage the systems being interconnected, as
well as the various resources they employ.

As data is passed down through the layers, each layer
may or may not add protocol information to the data, for
example, by encapsulating frames with a header or removing
the header, depending on the direction in the protocol
stack. The individual protocols define the format of the
headers.

MAC address includes a source address and a destination
address, which have a predefined relationship to a network
station. Higher network layers provide a network address
that has a logical relationship established by a network
administrator according to a predetermined network
addressing arrangement. The assigned network address conveys
information that can be used by a router when routing frames
through the internetwork. If the network address is
hierarchical, a router may use a portion of the address to
route the packet to a higher-level partition or domain in
the internetwork. Some protocols are hierarchical others
are not so hierarchical routing may or may not be available.

The global network may be subdivided into IP networks,
which in turn may be subdivided into subnets. An IP address
includes a network number (assigned by IANA), a subnet

number (assigned by a network administrator), and a host

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

that identifies an end station. The host number may be
assigned by a network administrator, or may be assigned
dynamically. This is a form of hierarchical addressing that
is used by IP routing algorithms to perform hierarchical or
prefix routing operations. Routing algorithms maintain
information of all higher-level routing environments in
routing tables for domains by recording their shortest
unique address prefixes.

A station may support more than one network layer
protocol. Such station has multiple network addresses and
multiple protocol stacks that present the same MAC address
on a port for the different protocols. Thus, a multi-
protocol stack station connected to both an IP and an IPX
network includes an IP network address and an IPX network
address.

A communications network may include a number of
network entities (or nodes), a number of interconnecting
links and communication devices. A network node is, for
example, a personal computer, a network printer, file server
or the like. An interconnecting link is, for example, an
Ethernet, Token-Ring or other type network link.
Communication devices include routers, switches, bridges or
their equivalents. As computer networks have grown in size,
network management systems that facilitate the management of
network entities, communication links and communication
devices have become necessary tools for a network
administrator.

A bridge or a switch is a Layer 2 entity that is
typically a computer with a plurality of ports for
establishing connections to other entities. The bridging
function includes receiving data from a port and
transferring that data to other ports for receipt by other
entities. A bridge moves data frames from one port to
another using the end-station MAC address information
contained in the switched frames. Switches interconnect the

communication media to form small domains of stations, such

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

as a subnetwork. Subnetworks or subnets provide an
organizational overlay to an internetwork that facilitates
transmission of data between the end stations, particularly
for broadcast transmissions. The subnet functions to limit
the proliferation of broadcast frames to stations within a
broadcast domain.

A router is an intermediate station that interconnects
domains or subnets by providing path from a node on a first
network to a node on a second network. There are single
protocol or multi-protocol routers, central or peripheral
routers, and LAN or WAN routers. A peripheral router
connects a network to a larger internetwork, and thus may be
limited to a single protocol. A central router may be
connected to a different board in a server or a hub and thus
usually has a multi-protocol capability.

A router provides the path by first determining a route
and then providing an initial connection for the path. A
router executes network routing software that depends on the
used protocol. A router can work with different data-link
layer protocols and thus can connect networks using
different architectures, for example, Ethernmet to Token Ring
to FDDI. Furthermore, there are routers of several levels,
wherein, for example, a subnetwork router can communicate
with a network router. Organizing a communications network
into levels simplifies the routing tasks since a router
needs to find only the level it must deal with. The use of
different network levels is shown in Fig. 1.

In general, a global communications network connects
devices separated by hundreds of kilometers. A LAN covers a
limited area of maximum several kilometers in radius
connecting devices in the same building or in a group of
buildings. LANs usually include bridges or switches
connecting several end-stations and a server. 1In a LAN, a
bridge or a switch broadcasts traffic to all stations.

Until a few years ago, a LAN was user-owned (did not run

over leased lines) with gateways to public or other private

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

networks. When a user moved or changed to an end-station at
another location on the network, a network administrator had
to rewire and reconfigure the user's station. This has
changed with the introduction of virtual LANs.

A virtual LAN (VLAN) is a logical Layer 2 broadcast
domain, which enables a logical segmentation of the network
without changing the physical connections. A VLAN enabled
switch segments the connected stations into logically
defined groups. Broadcast traffic from a server or an end-
stations in a particular VLAN is replicated only on those
ports connected to end-stations belonging to that VLAN. The
broadcast traffic is blocked from ports with no end-points
belonging to that VLAN, creating a similar type of broadcast
containment that routers provide. VLANs may also be defined
between different domains connected by a router. In this
case, the router passes network traffic from one domain to
the other (as done without defining a VLAN), and passes
network traffic from one VLAN to the other. The router also
passes network traffic between VLANs that are in the same
domain because VLANs do not normally share user information.
The router is configured as a member of all VLANs.

Virtual Private Networks (VPNs) have been designed to
interconnect end-stations that are geographically dispersed.
For example, owners of large communications networks can
provide centralized management services to small and medium
sized businesses. The provider can configure VPNs that
interconnect various customer sites in geographically
separate locations. These VPNs offer privacy and cost
efficiency through sharing of network infrastructure.
Various VPNs have been proposed with various degrees of
security, privacy, scalability, ease of deployment and
manageability.

A global communications network may use a different
levels different routing and connection management protocols
such as International Standards Organization (ISO) Open
Systems Interface (0SI) Intermediate Systems to Intermediate

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

Systems (IS-1S), and Internet Open Shortest Path First

(OSPF) protocols are used for connectionless routing of data
frames. Asynchronous Transfer Mode (ATM) Forum Private
Network-Network-Interface (PNNI) protocol is used for
connection oriented multi-media services. The routing
protocols identify a network node using a global address of
a Route Server Element (RSE). The RSEs generate routing
that identifies optimal routes for communication throughout
the network. The RSE is responsible for administration of
the algorithms that enable a node to keep its view of the
network topology and performance metric current, referred to
as Routing Information Exchange (RIE). Thus an RSE usually
acts as a central element for the routing of traffic through
the node.

In general, the use of WANs, LANs, VPNs, and VLANs has
increased the number and complexity of communications
networks. These networks continuously evolve and change due
to growth and introduction of new interconnections,
topologies, protocols, or applications. Furthermore, most
networks have redundant communication paths to prevent
portions of the network from being isolated due to link
failures. Also, multiple paths can be used simultaneously
to load-balance data between the paths. However, redundant
paths can also introduce problems such as formation of
loops. Furthermore, network performance can degrade due to
improper network configurations, inefficient or incorrect
routing, redundant network traffic or other problems.
Network hardware and software systems may also contain
design flaws that affect network performance or limit access
by users to certain of the resources on the network. These
factors make network management complex and difficult.

A network management process controls and optimizes the
efficiency and productivity of a communications network. A
network management station manages the network entities
(e.g., routers bridges switches, servers, storage devices,

computers, printers) using a network management protocol

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

such as a Simple Network Management Protocol (SNMP),
Internet Control Message Protocol (ICMP), or another network
management protocol known in the art. Using a network
management protocol, the network management station can
deliver information or receive information by actively
polling the network entities or by receiving unsolicited
information from the network entities. Using SNMP, a
network management station can executes a set, get, or get-
next functions to set and retrieve information from a
network entity. This information may be stored within the
polled network entity as Management Information Base (MIB).

The network management station can receive unsolicited
information from a network entity in the form of an SNMP
trap. Network entities may send SNMP traps to the network
management station when a problem in the network or network
entity occurs.

A network management station may be implemented using
any general purpose computer system, which is progiammable
using a high-level computer programming language OIT using
specially programmed, special purpose hardware. The hardware
includes a processor executing an operating system providing
a platform for computer programs that run scheduling,
debugging, input-output control, accounting compilation,
storage assignment, data management, memory management, and
communication control and other services. The application
programs are written in high level programming languages.

A network management station can include a network
manager unit, a network communication interface, a data
acquisition unit, a data correlation unit, and a graphical
user interface. The data correlation unit interprets data
received through the data acquisition unit and presents the
interpreted data to a user on the graphical user interface.

The network communication interface may include transport
protocols and LAN drivers used to communicate information to
the communications network. The transport protocols may be

iPX, TCP/IP or other well-known transport protocols. The

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

10

LAN drivers may include software required to transmit data
on a communications network through the network interface.
The LAN drivers are generally provided by the manufacturer
of the network interface for a general purpose computer for
the purpose of communicating through the network interface.
The network manager unit may be an SNMP network
manager/agent implementing SNMP functions, or another type
of network manager unit performing associated management
functions. The network manager unit utilizes the network
communication interface to transfer requests to network
entities over a communications network.

A network management station may use a network
management agent residing on a network entity. The network
management agent may be a software process running on a
processor or may be special purpose hardware. The network
management agent may be an SNMP agent (or ICMP agent), which
may include a data collection unit, a network manager unit,
and a network communication interface for communication as
described above. For example, this communication may use
network management functions such as SNMP functions.
Alternatively, a network management agent, residing on a
network entity, may include a data correlation unit, a data
Acollection unit, a network manager unit and a network
communication interface for communication.

There are prior art network management systems (NMS)
that detect a fault and represent the fault status in the
form of a single Boolean attribute of the model representing
a faulty network element in a NMS database. Here, the fault
status represents the NMS's ability to contact a network
element using common management protocols such as a SNMP
protocol or an ICMP protocol.

There are also prior art NMS that include objects,
called inference handlers. Inference handlers perform work
based on changes to a managed entity's attribute. In an NMS,
the inference handler provides the intelligence behind the

objects. An inference handler can perform different

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

11

functions such as fault isolation or suppression, but these
are frequently based on the NMS's ability to contact the
network element, which is used as the fault status
attribute. The NMS can then suppress the fault status of a
network element depending on the status of other neighboring
network elements. Frequently, however, loss of ‘contact
information in an NMS database does not sufficiently
represent various problems a network element can experience
as a result of a fault in a communications network.

In general, there is a need for a fault management and
diagnosis process that can provide a generic, open framework
applicable to any system.

Summary of the Invention

The present invention is a system, a method and a
product (that can be stored in a computer-readable storage
medium) for diagnosing or analyzing faults of various types
(including a complete or partial failure).

According to one aspect, a method or system for
analyzing a fault includes a fault object factory
constructed and arranged to receive fault data and create a
fault object; and a fault diagnosis engine constructed and
arranged to perform root cause analysis of the fault object.

Preferably, the method or system may further include
one of more of the following: a fault detector constructed
and arranged to detect a fault in a monitored entity;

a fault repository constructed and arranged to store and
access the fault object; and a fault handler constructed and
arranged to be triggered by the fault diagnosis engine to
analyze the fault object. The fault handler includes a fault
handler tester and a fault handler diagnoser.

According to another aspect, a method or system for
analyzing a fault including means for receiving fault data,
means for creating a fault object; and means for performing
a root cause analysis on the object to determine a root
cause.

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

12

pPreferably, the method or system may further include
one of more of the following: Means for creating a fault
object includes a fault object factory using fault data or a
detector remotely located from the system. Means for
performing the root cause analysis includes means for
invoking specific fault handlers. Means for employing fault
handlers includes employing a diagnoser fault handler oxr a
tester fault handler. Means for employing fault handler
includes obtaining an ordered list of fault handlers for a
specified transition state of the fault object. Means for
obtaining the ordered list includes employing a diagnoser
fault handler registered for the type of the analyzed
object. The diagnoser fault handler transitions fault
object between processing states.

The present system and method provide a generic, open
framework that implements a fault diagnosis engine for
controlling the entire process, a fault object factory for
creating fault object, a fault repository for receiving and
storing fault objects, and fault handlers used for
performing fault correlation and root cause analysis.

The fault management and diagnosis system may be used
for diagnosing faults in any system or device (for example,
a mechanical or electronic device, a communications network,
a material transfer network, a shipping network). The fault
diagnosis engine receives detected fault information from
multiple sources, controls the fault management, and
executes a root cause analysis. The fault diagnosis engine
also provides a mechanism for fault correlation and fault
impact assessment. In communications networks, the impact
assessment is applicable to both disruptions in services (or
applications that depend on the network infrastructure) and
to reduction of network performance due to the fault.

As mentioned above, the fault management and
diagnosis system uses a fault object factory that creates
fault records, called fault objects that store some or

all information pertaining to a single network problem.

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

13

Each fault has a processing state, which guides the fault
through its life cycle. The fault management and
diagnosis system uses fault handlers that are
specifically designed to be triggered upon changes in the
state of a given type of fault. The fault handlers
perform various aspects of the automated fault management
process described below.

Advantageously, the present system creates a fault
hierarchy or tree as a result of diagnosis of a single
detected problem in a managed system and this facilitates
root cause isolation. The fault tree facilitates a log
of the entire diagnosis process for the analyzed fault,
and inferred impact calculation based on the association
of faults in the tree. The fault tree also facilitates
fault resolution and re-evaluation because the conditions
tested during the original diagnosis of a problem are
recorded in the tree, and the ability to control the

processing of faults based on fault state transition.

Brief Description of the Drawings

Fig. 1 shows diagrammatically several network
management modules connectable to a communications network.
Figs. 2 and 2A are block diagrams of a fault
management and diagnosis process.

Fig. 3 is a block diagram of modules employed in a
fault management and diagnosis system.

Figs. 3A and 3C are block diagrams of objects
employed in the fault management and diagnosis system of
Fig. 3.

Fig. 3B is a block diagram of a fault repository

module employed in the fault management and diagnosis system

of Fig. 3.

Fig. 4 is a flow diagram that illustrates a

triggering mechanism for fault handlers by a fault diagnosis

engine shown in Fig. 3.

Figs. 5 and SA are block diagrams depicting

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

14

processing states of a fault during fault analysis.

Figs. 6, 6A, 6B, and 6C are block diagrams of a
fault tree according to one preferred embodiment.

Figs. 7, 7A and 7B are block diagrams of a fault
tree according to another preferred embodiment.

Figs. 8, 8A, 8B, 8C and 8D are block diagrams of a
fault tree according to yet another preferred embodiment.

Fig. 9 illustrates a sample network analyzed by the
fault diagnosis and management system.

Figs. 10, 10A and 10B are block diagrams of a fault
tree created by the fault diagnosis and management system
analyzing the sample network of Fig 9.

Description of Preferred Embodiments

Fig. 1 shows diagrammatically a network management
system 10 including a fault diagnosis system 12, a topology
mapper 14, an impact analyzer 16 and a help desk system 18.

The network management system communicates with a
communications network 20 (or application service). The
network includes a set of interconnected network elements
such as routers, bridges, switches,'and repeaters. These
network elements provide transportation of data between end
stations. Furthermore, there are computers known as servers
that provide services such as e-mail, accounting software,
sales tools, etc. Typically, data is transmitted
electronically or optically, and network elements can
forward data in packets, frames or cells to the intended
destination. Servers include network adapters and/or
software that interpret the electronic or optical data
packet into the data elements and pass these elements to the
appropriate application being hosted.

The network management system 10 includes a
commercially available processor (for example, Pentium
microprocessor manufactured by Intel Corporation) executing
an operating system providing an operating environment for a

network management program. The processor and the operating

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

15

system provide a computer platform for which application
programs are written in higher level programming languages.
The computer (or application host) interfaces with
permanent data storage, such as a magnetic or optical disk
drive, a disk array, non-volatile RAM disk, or a storage
area network, which maintain data files such as user
configurations and policies. In general, the network
management program may be configured as a generic software
application residing in any commercially available computing
platform.

preferably, fault diagnosis system 12, topology mapper
14, and help desk system 18 are software applications
written in Java and running on any computer with a Java
Runtime Environment (JRE). For example, a Dell laptop
computer with an Intel Pentium processor running the Windows
2000 operating system, or a Sun Ultra 60 computer running
Solaris v. 2.7. Alternately, fault diagnosis system 12,
topology mapper 14, and help desk system 18 are developed in
any object oriented or structured programming language, and
compiled for execution on any one or many computexr
platforms, or could be implemented on a neural network
computing device.

The computer has a network adaptor that provides
communication (preferably, but not necessarily, IP) to the
users on the network. The fault diagnosis engine
application may share a host with help desk system 18,
and/or the topology mapper, or each can run on a separate
host, in which case they communicate using a network
adaptor. Topology mapper 14 determines the network topology
and creates a model. The permanent data storage holds data
files that describe the current network topology, and
configuration files that control the performance of topology
mapper 14. A user is an end station, interfaced to access
the network or services, used by a person who is using the

network, or is using services provided by the network.

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

16

The network management system 10 performs a fault
management process 30 shown in Fig. 2. The entire process
is part of a phased, componentized, but interconnected
method, wherein all aspects of fault management are
performed. The fault management process of Fig. 2 includes
the following seven phases: fault detection 32, diagnosis
40, impact analysis 50, prioritization 60 presentation 70,
recourse 80, and resolution 90.

Fault detection process 32 (performed by fault
detectors 130 shown in Fig. 3) is the most basic part of the
fault management system. Fault detectors 130 detect raw
fault data. Fault detectors 130 receive information by SNMP
polling, SNMP trap handling, performance monitoring,
historical trend analysis, device configuration monitoring,
application and system-level management tools, and help desk
trouble tickets. Fault detection process 32 can also add
information to the raw fault data enabling improved
diagnosis of the fault. The fault data are assembled into
fault objects.

Fault diagnosis 40 occurs after a "detected" fault is
entered into a fault detection and management system 100,
which is a generic system for diagnosing a fault in any a
mechanical, electrical or other system. A fault detection
and management system 100 (Fig. 3), processes and correlates
detected faults with other faults to determine their
relationship. Fault detection system 100 finds one or more
n"root cause" faults and isolates these faults. Furthermore,
the system can optionally suppress other symptomatic faults
that were "caused" by the root cause fault. Fault diagnosis
40 can be performed in a single step or can involve many
techniques such as examining device neighbor knowledge,
tracing the route of management data, examining route tables
and ACLs, etc.

Fault impact analysis 50 determines the "scope" of the
analyzed fault. After receiving a root cause fault

determined, by fault diagnosis 40, impact analysis 50

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

17

determines the consequences of this fault. This
determination includes analyzing the network services
affected by the fault, the users affected by the fault, and
any other ramifications the fault has on network 20, or the
application being managed. Furthermore, impact analysis 50
may involve analyzing various logical layers that exist in a
communication network and correlating a fault with its
possible consequences at each layer. Impact analysis 50 may
use a fault causality tree located in a fault repository 140
(Fig. 3). The interpretation schemes include analyzing how
a network fault affects services like web servers ox e-mail,
examining how a misconfigured router running OSPF affects
the users in each area, etc.

The network management system may also perform fault
prioritization 60. After a fault has been diagnosed and its
impact analyzed, the fault may be prioritized. Fault
prioritization 60 assigns a priority/severity to each fault
object and this is used to determine the proper presentation
of the fault to a user. Fault prioritization process 60 may
include multiple methods based on the type and scope of the
fault such as examination of service level agreements and
how the fault violates them, mission critical device
analysis, and fault scope.

The network management system may also perform fault
presentation 70. Fault presentation 70 provides the
mechanism by which the system alerts a user that a fault has
occurred. Fault presentation process 70 presents all
information about the fault in a user friendly manner.

Fault presentation 70 may include steps and processes the
systems used to diagnose the fault, thus allowing a user to
verify the diagnosis and "trust" the system to accurately
diagnose faults. Fault presentation 70 may also include a
network monitoring alarm system.

The network management system may also include fault
recourse 80. Fault recourse 80 provides a way in which a

user can change the network management based on a given

WO 01/86443 PCT/US01/14557

18

fault. For example, fault recourse 80 may involve reducing
or stopping polling of devices downstream from a fault,
reconfiguring connectivity modeling, script invocation to
fix a misconfigured static route, or configuring user groups
for a different email server.

The network management system may also include fault
resolution 90. After presenting a fault to a user and
fixing the problem, problem resolution 90 records the
process for future fault detection and diagnosis. Fault
resolution 90 can automatically trigger for any single
resolved fault a re-evaluation of associated faults in the
system. This re-evaluation proactively assesses the full
scope of a resolved fault. If an associated fault is still
not resolved, diagnosis can be re-started to determine the
cause. This process is facilitated by the use of the fault
causality tree created as a result of fault diagnosis
process 40.

Fig. 2A shows diagrammatically in detail fault
diagnosis process 40. A detected fault enters the fault
detection and management system and a fault object is
created (step 42). The fault diagnosis engine (101 in
Fig. 3) triggers appropriate fault handlers (step 43). A
diagnoser fault handler generates possible faults that
may be causes of the previously entered fault (step 44).

For each generated, possible fault, fault diagnosis
engine 101 triggers appropriate tester fault handlers
(step 45). Each tester fault handler performs vendor-
specific and domain-specific tests to determine the
existence of one or several possible faults. Next, the
tester fault handler records test results (step 46). If
possible additional faults exist, the fault diagnosis
engine continues to trigger tester fault handlers and
diagnoser fault handlers (step 49). If there are no
other possible faults, the fault diagnosis engine has
isolated the fault and the system proceeds to impact
analysis 50.

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

19

Fig. 3 illustrates diagrammatically a fault
detection and management system 100. One embodiment of
fault detection and management system 100 is fault
diagnosis system 12 (Fig. 1). Fault detection and
management system 100 includes five main parts: a fault
diagnosis engine 101, a fault object factory 110, fault
detectors 130, a fault repository 140, and fault handlers
150. Fault detection and management system 100 has the
ability to receive detected fault information from
multiple sources, control the management of the faults,
and produce a root cause analysis. Furthermore, the
system also provides a mechanism for performing fault
correlation and impact analysis. The impact assessment
is not limited to the impact of the communications
network, but may include disruptions in services or
applications that depend on the network infrastructure.

Fault object factory 110 receives data from fault
detectors 130 and creates fault objects 112 shown in Fig.
3A. Each fault object 112 is associated with a fault type
and there may be many fault types. Furthermore, each
instance is a separate occurrence of a problem, potential
problem, or condition of a communication network or an
element located in the communication network (such as a
misconfiguration, a degradation of service, physical failure
or other).

Referring to Fig. 3A, the entire architecture of the
fault detection and management system based on fault objects
112, which are records representing a detected problem, a
potential problem, or a condition. Fault object 112
includes information about a detected fault, that is,
includes a description of the problem or condition stored in
field 114, time and date of the reported problem 116, a
fault processing state 118, and one or more test result
objects 120. The fault structure includes a context that is
a mechanism for sharing varying amounts of data related to

the fault; these amounts may exist between each

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

20

instantiation of a type of fault.

Referring to Fig. 3, fault detector 130 detects a
problem or potential problem on an entity in a managed
system. Fault detector 130 provides a record of the
condition to fault object factory 110, which generates fault
object 112. Fault detector 130 can monitor an entity or
receive unsolicited notification from an entity when a
problem occurs, according to different methods known in the
art. Fault detector 130 may perform a test and may provide
to fault object factory 110 data with the results of the
performed tests. Fault detector 130 may share a host with
fault diagnosis engine 101, or may reside externally as an
agent.

Referring to Fig. 3B, fault repository 140 is the
component used by a fault detection and management system
100 to store and access fault information. fault repository
140 stores every fault object 112 present in the system.
Each.component of the system {(detection, diagnosis, etc.)
can enter new fault objects into fault repository 140 and
access any fault object 112. Preferably, fault repository
140 includes a table structure with services capable of
searching and locating existing faults.

Fault repository 140 also includes fault associations
142, which provides a mechanism for relating faults to one
another. Specifically, each defined fault association
relates two fault objects. One fault object is on the left
side of the association, and the other fault object is on
the right side as shown for fault trees below. The
semantics of an association are defined by the type of the
association. New fault association types can be defined and
added to the system, preferably using Interface Description
Language (IDL) definitions of an interface for a sexvice
that uses the Common Object Request Broker Architecture
{(CORBA) transport protocol.

Referring again to Fig. 3, each fault handler 150
performs a designated type of work as a result of a fault

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

21

object entering a certain processing state (shown in Fig.
5) . Fault handlers 150 may exist internal to the system, or
reside externally in a separate process. Fault handlers 150
are registered for a particular fault type and state and, as
part of the registration process, each fault handler 150 has
an integer priority value. Then, fault handlers 150 are
sorted by their priority values so that a fault handler with
the lowest priority value is triggered first and subsequent
handlers are triggered in sequence, as described below. One
type of fault handler 150 can test a fault object and create
a test result record. Furthermore, fault handler 150 may
create additional types of fault objects, create
associations between fault objects, correlate fault objects
that indicate a similar problem, or perform impact analysis
on a fault object to determine the scope of a problem. A
tester fault handler 152 performs a selected test on a
fault. A diagnoser fault handler 154 creates additional
types of fault objects.

Fault diagnosis engine 101 is the central component of
fault detection and management system 100 since it drives
the management and-diagnosis of faults. Fault diagnosis
engine 101 provides a generic mechanism for fault handlers
150 to register for changes in the processing state of
faults of a given fault type. Fault diagnosis engine 101
may employ any mechanism to specify registrations. The
preferred implementation of fault diagnosis engine 101 uses
XML (Extensible Markup Language) technology.

Referring to Fig. 4, when a fault transitions to a
state for which a handler has registered, the engine
triggers the handler to perform its work. Fault diagnosis
engine 101 can trigger one of fault handlers 150 arbitrarily
or may use some ordering mechanism. Preferably, fault
diagnosis engine 101 uses a priority mechanism to order the
triggering of fault handlers that are sorted by their
priority value (by triggering first a fault handlexr with the
lowest value).

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

22

Fault detection and management system 100 uses fault
processing states for analyzing faults. A fault's
processing state represents its status in the fault
management process and provides a mechanism to control the
management of the fault. A fault can have a large number of
possible states, and a fault can transition from state to
state using different ways, as shown in Figs. 5 and B5A.
Preferably, the system utilizes a fault type hierarchy in
which generic base fault types are defined and f£rom which,
new more specific fault types can be derived. Each fault,
which exists in the system, is of some pre-defined fault
type.

Referring to Fig. 3C, a test result object 120 includes
a record of test results that were performed to determine
the existence of the problem or condition for which the
fault was created. Test result object 120 includes a
textual description of the test (field 122), data
identifying from the target of the fault (field 123), test
data (field 124), any thresholds and parameters used in
determining the test result (field 125). Test result
record 125 also contains a state representing the status of
the test.

While performing its work on a fault object, a fault
handler may cause the processing state of the fault to be
changed. In this case, no other handlers for the current
state are triggered. Fault diagnosis engine 101 obtains the
handlers for the new state and resumes triggering with the
new handlers when the current handler completes its work.

Fig. 4 illustrates the triggering mechanism using a
flow diagram. Fault diagnosis engine 101 provides a
triggering mechanism and controls and manages the diagnosis
process.

Referring to Fig. 5, fault diagnosis engine 101
utilizes processing states of a fault to control the flow of
diagnosis for that fault. As described above, fault

handlers 150 are triggered for a fault based on the current

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

23

processing state. The transition diagram of Fig. 5 defines
the following processing states: An initial state 180
begins the life-cycle of a fault object. A detected state
182 indicates that an external fault detector 130 or an
internal handler 150 positively determined the condition
(that the fault represents) as a problem. A testing state
184 indicates the fault is unverified; that is, the
condition that the fault represents requires testing to
determine if it is a problem. A completed state 184
indicates that fault diagnosis has completed for the fault.

Fault diagnosis engine 101 may allow fault handlers
150 to directly transition a fault between states, wherein
preferably the processing state is hidden from fault
handlers 150. The engine transitions a fault's processing
state based on the state of the current result of the fault
as provided by the handlers. These are the following three
test result states (shown in Fig. 5A): PROBLEM indicates a
test has identified the fault to be a problem; NO_PROBLEM
indicates a test has verified the condition that the fault
represents does not or no longer exists; and UNKNOWN
indicates a test could not be completed for some reason or
the condition that the fault represents requires
verification.

Fig. 5A illustrates transition of the processing states
(shown in Fig. 5) based on test results of an analyzed
fault. For example, fault diagnosis engine 101 triggers
tester fault handler 152 (Fig. 3) for testing state 184 and
fault handler diagnoser 154 for detected state 182.
Furthermore, fault handler diagnoser 154 may also be
triggered for testing state 184 if there are no tester fault
handlers that can perform a direct test. There may also be
fault handlers for completed state 184, which would not
perform diagnosis, but would perform other tasks such as
correlating faults that share a common root cause (described
below) or notifying a presentation system to display the

diagnosis results when performing presentation process 70.

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

24

. Fault diagnosis engine 101 may employ further rules
that govern the triggering of fault handlers when there are
multiple handlers (or types of handlers) for a particular
processing state. If there are multiple types of handlers,
the engine may impose an ordering such that all handlers of
one type are triggered before any handlers of another type.

Furthermore, if a handler provides a concrete result, as
defined by the various result states, the engine may
suppress remaining handlers of that type from being
triggered and/or may suppress handlers of other types.

According to the preferred embodiment, since there may
be both tester fault handlers 152 and diagnoser fault
handlers 154 registered for testing state 184, fault
diagnosis engine 101 imposes a rule that all tester fault
handlers are triggered before any diagnoser fault handler.
This is because a tester fault handler can directly
determine the existence or nonexistence of a problem, but a
diagnoser fault handler cannot. In addition, if a tester
fault handler or diagnoser fault handler provides a concrete
result, then fault diagnosis engine 101 suppresses remaining
handlexrs for the current processing state. A conérete
result is one whose state is either PROBLEM or NO_PROBLEM. A
result state of UNKNOWN is not concrete, that is a result
could not be positively determined, as shown in Fig. 5A.

Fault detection and management system 100 utilizes a
decomposition approach in the diagnosis of a fault to
determine the root cause. Fault detector 130 enters a
problem or potential problem into fault object factory 110,
which creates a fault object treated as a symptom fault.
The symptomatic fault is decomposed into one or more
constituent faults that further refine the symptom as shown
in Fig. 6. Each constituent fault represents a possible
suspect that may be causing the symptom. For each
constituent fault, tests may be performed to determine the
existence of a problem or the fault may be decomposed into

further suspects. The process continues until all faults

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

25

have been completely decomposed and there are no more
suspects.

The end result of this process is a hierarchy of faults
in the form of a tree with the original symptomatic fault at
the root as shown in Fig. 6. The fault tree includes a root
fault level, one or several intermediate fault levels, and a
leaf fault level. Each fault in the tree, except the root,
has at least one parent fault from which it was decomposed.
Each fault also has zero or more child faults that were
spawned from it. A child fault represents a possible cause
of its parent. A fault that has children but is not the root
is termed an intermediate fault. A fault that has no
children, that is one that could not be further decomposed,
is termed a leaf fault. A leaf fault that indicates a
problem is a probable cause of the root symptom. There may
be more than one root cause.

Referring to Fig. 6, fault A is the original root
symptom. Fault A is decomposed into faults B and C, fault B
is decomposed into faults D and E, and fault C is decomposed
into faults F and G. Faults B and C are intermediate faults
because they have children but are not the root. Faults D,
E, F, and G are all leaf faults.

Fault tree 200 enables fault detection and management
system 100 to locate one oxr several root causes of any fault
in the tree by traversing the children of that fault and
compiling the leaf fault(s) that indicate a problem. Fault
tree 200 as a whole also embeds the entire diagnosis
process. By traversing the entire sub-tree of any fault, one
can compile a complete log of the steps taken and the
results of tests perforﬁed to diagnosis the fault. Thus, a
presentation process 70 can display the root cause(s) of a
fault and/or can present a diagnosis log allowing an end
user to verify the process.

Referring to Fig. 3, fault diagnosis engine 101 manages
the structure of fault tree 200. Fault handlers 150 provide

the contents and semantics of the tree. For each fault in

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

26

fault tree 200, one or more fault handlers 150 are
triggered. Fault handler 150 may perform a specific test on
the fault and provide a result of the test to the engine or
it may create one or more child faults to find a possible.
cause. Each new child fault creates a new branch in the
fault tree. A branch may be represented preferably by a
fault association called MaybeCausedBy shown in Fig. 6.

Tester fault handler 152 performs a direct test and a

diagnoser fault handler 154 spawns possible suspect faults.
Other types of handlers may correlate similar faults or
perform impact analysis. Fault handler 150 could be both
test fault handler 152, and diagnoser fault handler 154,
which can perform a test, provide a result and also attempt
to find the cause. Preferably, a handler is not both test
fault handler 152 and diagnoser fault handler 154.
Furthermore, if diagnoser fault handler 154 does not provide
a direct result for a fault object, a composite result is
computed from the results of the fault's children (shown,
for example, in Fig. 6). Fault detection engine 101 or
diagnoser fault handler 154 may compute the composite result
according to rules provided below.

Referring to Fig. 6A, fault A is entered into the
system by detector 130 as a problem. Also referring to Fig.
52, the fault begins in initial state 180 and is
transitioned to detected state 182. Diagnoser fault handler
154 creates two child faults, B and C. A MaybeCausedBy
association is created between faults A-B and A-C, as shown
in Fig. 6A.

The current result state for each fault is shown in the
upper right corner of each fault box. The result state for
faults B and C is indicated by a question mark (?) because a
result has not yet been computed. Since faults B and C are
unverified, the engine transitions these faults to testing
state 184. Diagnoser fault handler 154 creates for fault B
new faults D and E, and creates for fault C new faults F and

G. ©Next, fault diagnosis engine 101 triggers tester fault

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

27

handlers 154 for faults D, E, F, and G and these testers
assert results shown in Fig. 6B. Since results have been
computed for faults D, E, F, and G, fault diagnosis engine
101 transitions these faults to the completed state 186
(Fig. 5A) . Next, fault diagnosis engine 101 computes'a
composite result for faults B and C according to the
following default rules for composite result computation:
1. If any child fault result state is PROBLEM, then the
parent fault's result state is PROBLEM.
2. If all child fault result states are NO_PROBLEM, then
the parent fault's result is NO_PROBLEM.
3. Otherwise, the parent fault's result is UNKNOWN.
Using the above rules, the composite result for fault B is
NO_PROBLEM and the composite result for fault C is PROBLEM.
Thus fault F is the cause of fault C. The system indicates
this causality with another association called CausedBy as
shown in Fig. 6C.

The fault diagnosis is now complete on faults B and C
so they transition to completed state 186. The composite
result for A is PROBLEM since the result state for fault C
is PROBLEM and a CausedBy association is created between A
and C as shown in Fig. 6C.

As described above, the system executed root cause
analysis and determined the root cause for symptomatic fault
A is fault F. The diagnosis log for fault A shows that the
conditions tested for faults D and E did not indicate a
problem and that a result for fault G could not be
determined, possibly because of the problem on fault F.

If the resulting fault tree did not find a root
problem, then the composite result for fault A would
indicate NO PROBLEM. Such result would contradict the
original assertion of a PROBLEM. In this case, the engine
would throw out the composite result and leave the original
PROBLEM result. Such a problem may have been intermittent
and resolved itself quickly, or the detector was faulty, or

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

28

the diagnosis was incomplete, perhaps reguiring additional
testing and diagnosis.

Referring to Fig. 7, according to another situation,
multiple symptomatic faults may be caused by the same root
problem. This may result in portions of multiple fault trees
being identical, that is the diagnosis for multiple
symptomatic faults would create the same faults with
possibly the same results. Consider two symptomatic faults,
A and B shown in Fig. 7. Both faults entexr the system at
the same time and fault handlers for both faults A and B
attempt to create same fault C. The engine can handle this
scenario in several different ways shown in Figs. 7 and 7A.

A simple implementation would create two copies of fault C,
one for each fault tree. Each fault tree would only be
aware of its copy and, thus, each copy of fault C would be
diagnosed separately. This is depicted in Fig. 7 with C
being the copy. The above approach may result in tests
being performed for the same condition twice, which may not
be desirable for performance reasons.

Alternatively, the system creates two copies of fault C
but “reuées" the results of test(s). For example, consider
that fault C is created first and subsequently tested. A
short time later fault C~ is created. Instead of performing
the same test again, the engine would use the test result

from fault C for fault C~. A drawback to this approach,

however, is that, depending on the semantics of the test, a
significant amount of time may have passed such that the
result computed for fault C may be invalid for fault cT,
that is the result for C is now ““stale''. To alleviate this
issue, the system may employ certain rules or heuristics to
determine when and if a test result can be reused. The
system may only reuse the results from certain tests or may
only reuse a result depending on its state. For example,
using the test result states defined above in the preferred
implementation, a NO_PROBLEM result may always be re-tested
but a PROBLEM or UNKNOWN result may be reused regardless of

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

29

the time elapsed. The engine may also ~“age'' test results.
For example, if fault C~ occurs within a certain amount of
time after fault C as determined by some heuristic ““aging"’
factor, then the result for C can be used. Otherwise fault
C* is re-tested. An ““aging'' factor may be defined system-
wide or an ““aging'' factor may be specified per fault type
or per test. A system implementation may utilize only one
set of rules or heuristics for test result reuse or may use
a combination of approaches.

Fig. 7A depicts another approach to handling identical
fault tree portions or sub-trees is to share sub-trees
amongst multiple symptomatic faults. In this embodiment,
instead of multiple fault super-trees maintaining their own
copy of a particular sub-tree, the super-trees would
““intersect'' at certain faults and share a common sub-tree.
Therefore fault C is shared by faults A and B.

Thus, faults A and B would share fault C and its
associated test result(s). A similar issue exists, however,

-~

regarding “stale'' test results, as described above.
Similar rules or heuristics can be applied here as well. If
fault B intersects with fault C some time after fault A,
these rules can be applied to determine if fault C needs to
be re-tested. Fig. 7B illustrates a more complete example
using the test result states defined above in the preferred
implementation. In the diagram of Fig. 7B, faults A and F
intersect at fault C and share its PROBLEM test result. The
root cause of both A and F is fault D.

According to another important aspect, fault management
and diagnosis system 100 enables resolution and possible re-
evaluation of a previously detected problem. The system
reacts when a monitoring system detects that a problem has
been resolved or no longer exists. The system may remove
faults and notify presentation 70 of the resolution. This
process can be automated and/or require user intervention.
If a user instructs the system that a fault has been

resolved, the system could merely remove the fault or could

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

30

choose to re-evaluate the condition represented by the fault
and verify resolution.

The fault tree hierarchy can facilitate resolution and
re-evaluation of faults. The system provides a mechanism
allowing an observer or detector to specify that a fault
originally entered into the system as a problem has
subsequently been resolved. Additionally, problems detected
by internal handlers in the system may monitor the condition
to detect resolution. When a fault is deemed resolved, the
engine would re-test all the faults, if any, in the sub-
tree of the resolved fault and propagate the new computed
result ““up'' to its parent fault. The parent fault would
then re-test and propagate its new result. This process
continues until the entire tree has been re-evaluated. This
may result in the entire tree being resolved or the
isolation of a new cause for the root symptomatic fault if
it is determined that the root symptom is still a problem
even though the original root cause has been resolved.

As shown in Fig. 6C, the system diagnosed fault F as
the root cause of symptomatic fault A. Assume the fault
handler that tested fault F is monitoring the condition and,
some time later, detects that the problem no longer exists.
A new test result is asserted for fault F with a state of
NO_PROBLEM that contradicts the original PROBLEM result
shown in Fig. 6C. Fault diagnosis engine 101 then makes an
~~inference'' on the parent fault of fault F with the new
result state of fault F. An inference on a fault is not an
assertion of a new result but a suggestion used to determine
if the fault needs to be re-evaluated. If the inferred
result state contradicts the current result state for the
fault, the fault is re-evaluated. In this case, the engine
infers a result state of NO_PROBLEM on the parent fault of
F, fault C. Since this inference contradicts the current
result state, PROBLEM, fault C is re-evaluated. Fault

diagnosis engine 101 transitions the processing state of

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

31

fault C from completed state 186 back to testing state 184
(shown in Fig. 5).

Fault diagnosis engine 101 re-triggers diagnoser fault
handler 154 for fault C (Fig. 8), which in turn attempts to
re-create fault F and fault G. However, since faults F and
G already exist in the current tree, no new faults are
created. The engine then infers NO_PROBLEM on faults F and
G as shown in Fig. 8A. There is a contradiction for fault
G, since its current result state is UNKNOWN, so it is
transitioned back to testing state 184, but fault F remains
in completed state 186 since no contradiction occurs and a
new result was just asserted for it. Assume tester fault
handler for fault G finds that G has been resolved and
asserts the NO_PROBLEM result state. Diagnosis for fault G
is complete so its processing state is changed to completed
state 186. The composite result computed for fault C would
now be NO PROBLEM and the CausedBy association between C and
F removed, as shown in Fig. B8A.

The new result state for fault C is now propagated to
fault A, which causes A to transition back to testing state
184. However, since both child faults B'and C are
NO PROBLEM, the composite result for fault A now becomes
NO PROBLEM and the causality association between faults A
and C is removed, as shown in Fig. 8B.

The entire fault tree, shown in Fig. 8B, was re-
evaluated except for the sub-tree rooted at fault B, which
was not re-evaluated because its original test result state
was NO_PROBLEM and no contradiction occurred (see Fig. 6C).
If the engine employs an aging factor for test results, as
described above, then fault B could be re-evaluated if its
result is deemed stale.

In the embodiment performing aging factor testing,
fault detection engine 101 re-evaluates fault results deemed
stale. Specifically as shown in Fig. 8B, fault detection
engine 101 re-evaluates fault B's sub-tree. Assume that
fault E is re-tested and the result is NO_PROBLEM, but fault

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

32

D re-tests with a new result of PROBLEM. The composite
result for fault B is now also PROBLEM and a causality
association is created between faults B and D (Fig. 8C).
Fault C is also re-evaluated. Fault detection engine 101
generates a composite result for fault A according to the
above rules. Referring to Fig. 8D, based on results of
faults B and C, fault A is PROBLEM as determined in the
fault tree of Fig. 6C, but now its root cause is fault D.

The above-described fault diagnosis and management
process may be applied to any system. In the following
example, the above-described fault diagnosis and management
process is applied to diagnosing a fault that occurred in a
communications network 210 shown in Fig. 9. Communications
network 210 includes a router Rl connecting a subnet 212 and
a subnet 220, and includes a router R2 connecting a subnet
220 and a subnet 225. Subnet 212 includes a bridge Bl, a
workstation 214, and a server 216. Subnet 220 includes a
bridge B2 and a workstation 222, and subnet 225 includes a
bridge B3 and a HTTP server 228. Workstation 214 includes
client agent with IP address 10.253.100.10. The client
agent is monitoring HTTP server 228 with IP address
10.253.102.15 by periodically requesting an HTTP web page.
The fault diagnosis and management process is running on
workstation 222at 10.253.2.104. A DNS server resides on
machine 216 having IP address 10.253.100.1.

For example, the client agent 214 tries to load an HTML
page with the URL ~~www.acme.com/index.html'' from HTTP
server 228, but receives no response. The client agent,
acting as fault detector 130, sends information about the
failure to fault object factory 110. Fault object factory
130 creates a fault object of type HTTPLostFault from the
information provided and its processing state is set to the
detected state 182 (Fig. 5}.

As shown in Fig. 4, fault diagnosis engine compiles a
list of fault handlers (step 172) registered for the
HTTPLostFault type. Instep 176, diagnoser fault handler 154

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

33

registered for the HTTPLost fault type is triggered.
Diagnoser fault handler checks for two possible causes of
the problem: a DNS service failure and an HTTP service
failure. The DNS is checked because name resolution may be
needed on the client side to determine the IP address of the
HTTP server. Thus, the diagnoser creates two faults: one of
type DNSServiceFailure fault 234 and the other of type
HTTPServiceFailure fault 238, as shown in Fig. 10.

For DNSServiceFailure fault 234, diagnoser fault
handler 154 creates two faults: one of type DNSSexrverDown
fault 235 and the other of type FullContactLost fault 236.
Similarly, diagnoser fault handler 154 for the
HTTPServiceFailure fault 238 creates two faults: one of type
HTTPServerDown fault 239 and the other of type
FullContactLost fault 240, as shown in Fig. 10.

For the HTTPServerDown fault 239 tester fault handler
152 makes a query to agent running on HTTP server machine
228 at IP 10.253.102.15 to verify that the HTTP server
process is running. Assume HTTP server 228 is running so the
result state of the test is set to NO_PROBLEM. Tester fault
handler for the FullContactLost fault 240, child of the
HTTPServiceFailure fault 238, performs an ICMP echo request.
(or ping) from the management station 222 at 10.253.2.104 to
HTTP server machine 228 at 10.253.102.15. Assume a response
is received from the ping, thus the result state of this
test is also NO_PROBLEM. At this point, fault detection
engine 101 has verified that the management station can
contact the HTTP server machine 228 and the HTTP service is
available.

Similarly, tester fault handler 152 for the
DNSServerDown fault 235 makes a query to the agent on DNS
server machine 216 at IP 10.253.100.1 to verify that the DNS
server process is running. In this case, for example, no
response is received from the agent on machine 216. As shown
in Fig. 10A, tester fault handler 152 asserts a test result
with state UNKNOWN on DNSServerDown fault 235 because it

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

34

could not be positively determined if the DNS service is
available or not. The server process could be running but a
network failure may be preventing access from the management
station. Next the FullContactLost fault tester handler 152
is also triggered for the other FullContactLost fault from
source IP 10.253.2.104 to Destinatioh IP 10.253.100.1, the
DNS server 216. Assume the DNS server 216 is down, this ping
request fails and no response is received. Tester fault
handler 152 asserts a result with state PROBLEM as shown, by
236P in Fig. 10A.

As shown in Fig. 10B, according to the rules stated
above, the composite result state for the HTTPServiceFailure
fault 238NP is NO_PROBLEM, and the composite result state
for the DNSServiceFailure fault 234P is PROBLEM. A CausedBy
association is created between the DNSServiceFailure fault
234P and FullContactLost fault 236P.

A composite result state of PROBLEM is computed for the
root HTTPLostFault, which agrees with the original PROBLEM
assertion, and a CausedBy association is created between the
HTTPLost fault 232P and the DNSServiceFailure fault 234P.
Thus, the root cause of the HTTP request failure is that the
DNS server machine is down, preventing name resolution of
the HTTP server machine.

Additional, more complex diagnosis can be performed to
check for other possible causes, such as a bad URL,
configuration problems on the client side such as invalid
TCP/IP configuration for DNS and the default gateway, and
hardware problems on the server side such as a hard disk
failure. Diagnoser fault handler 154 can be implemented for
the FullContactLost fault to trace a path between the source
and destination and create faults. Such a path dependent
test tests the network devices and ports that the data
traverses, at both Layer 2 and Layer 3, to further isolate a
problem as is described in PCT application (docket No. A3-
03WO) entitled "“Systems and Methods for Diagnosing Faults
in Computer Networks'' filed on 7 May 2001, which is

10

15

WO 01/86443 PCT/US01/14557

35

incorporated by reference.

Preferably, the FullContactLost faults 236 and 240
contain the client's IP address as the source instead of the
management station's, as in the above example. Thus, the
tested path is from the client's perspective. Also, in the
above example, the HTTPLost fault 232 was detected by a
software agent monitoring the HTTP sexrver. Such a fault
could also be injected into the fault diagnosis system via a
Help Desk by a user experiencing a problem as described in
the co-pending PCT application (docket no A3-05WO) entitled
““Help Desk Systems and Methods for use with Communications
Networks'' filed on 7 May 2001, which is incorporated by
reference.

Numerous other embodiments not described in detail here
can apply the principles described to particular
applications and are within the scope of the claims.

What is claimed is:

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

36

CLAIMS

1. A method of diagnosing a fault, comprising the acts
of:
receiving fault data;
creating a fault object; and
performing a root cause analysis on said object to
determine a root cause.

2. The method of claim 1 wherein said creating a fault
object includes employing a fault object factory using fault
data.

3. The method of claim 1 wherein said performing root

cause analysis includes invoking specific fault handlers.

4. The method of claim 3 wherein said employing fault
handlers includes employing a diagnoser fault handler.

5. The method of claim 3 wherein said employing fault
handlers includes employing a tester fault handler.

6. The method of claim 4 or 5 wherein said employing
fault handler includes obtaining an ordered list of fault
handlers for a specified transition state of said fault
object.

7. The wmethod of claim 4 wherein said obtaining the
ordered list includes employing a diagnoser fault handler
registered for the type of the analyzed object.

8. The method of claim 5 wherein said employing
diagnoser fault handler includes transitioning fault object
between processing states.

9. The method of claim 5 further including determining
casualty.

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

37

10. The method of claim 6 further including performing
resolution and re-evaluation of fault objects.

11. The method of claim 6 wherein said employing said
diagnoser fault handlexr includes decomposing said fault
object into at least two constituent fault objects, wherein
each said constituent fault object represents a possible

cause of said received fault data.

12. The method of claim 11 further including employing
a tester fault handler on each said constituent fault
object.

13. The method of claim 12 including employing a state
transition diagram.

14. The method of claim 13 wherein said employing the
transition diagram includes using an initial state, a

testing state, a detected state, and a completed state.

15. The method of claim 11 further including employing
a fault object tree.

16. The method of claim 15 wherein fault objects in
said fault object tree are related by a MaybeCausedBy

association.

17. The method of claim 16 wherein fault objects in
said fault object tree are CausedBy association.

18. The method of claim 1 further including impact
analysis of said determined root cause on a system from

which said fault data was obtained.

22. The method of claim 1 further including

10

15

20

25

30

35

WO 01/86443 PCT/US01/14557

38

prioritization.

23. The method of claim 1 further including fault
presentation that displays fault result to a user.

24. The method of claim 1 further including recourse
that provides a way for a user to a system from which said
fault data were obtained.

25. A system for analyzing a fault, comprising:

a fault object factory constructed and arranged to
receive fault data and create a fault object; and

a fault diagnosis engine constructed and arranged to
perform root cause analysis of said fault object.

26. A system of claim 25 further including a fault
detector constructed and arranged to detect said fault data

in a monitored entity.

27. A system of claim 25 further including a fault
repository constructed and arranged to store and access said
fault object.

28. A system of claim 25 further including a fault
handler constructed and arranged to be triggered by said

fault diagnosis engine to analyze said fault object.

29. A system of claim 28 wherein said fault handler
includes a fault handler tester.

30. A system of claim 28 wherein said fault handler
includes a fault handler diagnoser.

PCT/US01/14557

WO 01/86443

1/19

o—L "9ld| I-1 "9l4

d3asn

d3asn

“ﬂ_Lﬂ
MIAddVIN %OOJO&O: HIAZATIYNY LOVJNI

L M3ddVN A0010d0Y [d32A WY L9V Al > s s A530 J1BH__

Z7 WALSAS
SISONOVIQ LINV.4

WALSAS

PCT/US01/14557

WO 01/86443

2/19

d43sn

@ ﬂww}‘mm/\

¢—VIyv

VIV
NOBXJY8

NIvNOd Si-Sl

-1 "old

ygasn

2 ®

£ 9—L13NANS

NIVNOQ did

PCT/US01/14557

WO 01/86443

3/19

¢ 9l

Qm//

NOILNT0S3Y

W3LSAS
1IN0
318N0dL

974 //

AVidsId

Hﬁ_ _ NOLLYLN3S3dd

NOILNT0S3d
Q3LvwoLny
‘SAONVHO
LNINIOVNVA

ALIHOIdd
S¥3sSN Q3L0344v
SADINYAS 4310344V
17nv4 @3Lvosl

3S¥NOO3

AJ

Dm/

NolLvziLiyoryd

l

om//

1nv4

SY3SN J310344Y
S3I0IAY3S QALIAddV m.__.mn%@M_\ﬁ__,q
17INY4 d31v10s!

.

d3iviosl

SY31S3l
SYISONOVIQ

]

SISONOVIA 11Nv4

NO1LO313d

17nv4

or—

I

WO 01/86443 PCT/US01/14557
4/19

42
/
DETECTED FAULT %0
ENTERS THE SYSTEM yel

43

FAULT ENGINE
TRIGGERS
APPROPRIATE FAULT HANDLERS

FAULT DIAGNOSER GENERATES
POSSIBLE CAUSE FAULTS

/45

FOR EACH POSSIBLE FAULT,
FAULT ENGINE TRIGGERS
APPROPRIATE FAULT TESTERS

FAULT TESTER PERFORMS VENDOR
AND DOMAIN—SPECIFIC TESTS
TO DETERMINE EXISTANCE OF

POSSIBLE FAULT, AND
RECORDS TEST RESULTS /49

47

FAULT ENGINE
CONTINUES TO
TRIGGER FAULT
HANDLERS FOR THE
DETECTED FAULT

DOES POSSIBLE
FAULT EXIST?

NO

DONE
DIAGNOSING FAULT

o
FIG. 2A

WO 01/86443

100
///,101 N

FAULT DIAGNOSIS
ENGINE

519

PCT/US01/14557

140
pall

ACCESSES DATA

INSERTS FAULT

FAULT REPOSITORY

OBJECTS

TRIGGERS
HANDLER

ADDS NEW FAULT

ACCESSES
DATA

l

OBJECTS TO
FAULT HANDLER
l SENDS DATA
| . IFOR NEW FAULT
|| TESTER
FAULT OBJECT 1521
FACTORY
110 | DIAGNOSER
P
154
SENDS DATA FOR
NEW FAULT \\\\\\\
150
-
-
DETECTOR

130

FIG. 3

PCT/US01/14557

WO 01/86443

6/19

oci
/

o¢ Il

A1v1iS LINS3Y

~—&cl

viva 1S3l

S~ Z!

ALILNT 1393Vl

~— £zl

NOILJINOS3d

~— 22l

INIL/3LYA NOWLY3INO

TNNN

103rg0 LNS3y 1S3L

N:/l

ve Ol

-

103rg0 1INS3y 1S3l

~—o0ci

_

]

3LVLS 9NISS300Yd 911

NOILdIN0S3a F oy

JNIL/3LVYA NOWLVIND N—g1

103rg0 11nvd4d

WO 01/86443 PCT/US01/14557
m7m9

140

FAULT REPOSITORY

112
Y FAULT OBJECT

142~ FAULT ASSOCIATION
OBJECT

FIG. 3B

WO 01/86443 PCT/US01/14557
8/19

170

A FAULT OBJECT TRANSITIONS TO
PROCESSING STATE

172
s

THE FAULT DIAGNOSIS ENGINE
COMPILES AN ORDERED LIST OF
FAULT HANDLERS FOR THE FAULT
OBJECT'S PROCESSING STATE

ANY MORE FAULT
HANDLERS ON THE
LIST ?

176
/

REMOVE THE NEXT FAULT
HANDLER AND TRIGGER IT

178

DID THE PROCESSING
STATE OF THE FAULT
OBJECT CHANGE ?

179

COMPILE A NEW ORDERED LIST
OF FAULT HANDLERS FOR THE
NEW PROCESSING STATE

FIG. 4

WO 01/86443 PCT/US01/14557

9/19

/ 180

INITIAL
STATE
184\
TESTING DETECTED
STATE STATE
182
COMPLETED
STATE
186
/780
P = PROBLEM INITIAL
NP = NO_PROBLEM STATE
U = UNKNOWN
184’
\ U P
TESTING P DETECTED
STATE STATE
NP.U P.NP,U 52"
PNPU | cOMPLETED NP
STATE
186’

FIG. 5A

PCT/US01/14557

WO 01/86443

10/19

Vo 9l

a Linv4

[

g 1nv4

9 L1Nvd 4 11nv4 3 1invd
i i 5
O 11nv4 g 17nv4d
& n..
INON = & W3INEO¥d ON = dN
NMONSNA = N W31808d = d
sossyAgpesnp)aghkoiy &< LNV
1337
,SD<.W_/ Ava 9 1Nnv4 4 17Nv4 3 1Inv4
TIAIT LNV
3LVIQINYALNI O L1Nvd g LINv4
1373
LInv4 100y SN\ v 1nvd

PCT/US01/14557

WO 01/86443

1119

O 1L1Nv4d
N
ANON = &
NMONMNA = N
W378038d ON = dN
W3180¥d = d
oossyAgpasnp)agkop

20ssyAgpasnpn) «

O 11NV

N

INON = &
NMONMNN = N
W37808d ON = dN
W37808d = d

oossyAgpesnn)egApiy

a 1nvd

dN

d

09 9ld
1 17Nv4 3 17nV4
d dN
\\\\
5 17NV4 g 11nv4
d dN
4//
Ny 1Inv4
L d
g9 94
4 17Nnv4 3 Lnv4
d dN
0 1InV4 g 17NV
b3 é
v 1INv4

a L1inv4d
dN

WO 01/86443

12/19

PCT/US01/14557

FAULT A FAULT B
FAULT C | |FAULT C’
FAULT A FAULT B
FAULT C

FIG. 7A

PCT/US01/14557

WO 01/86443

13/19

g ol

d 1inv4

dN

o 11Nv4 4 17NV 3 17Nv4
N dN dN
\\\\
ANON = & <
woninn = |9 L1V 8 1nv4
W3789048d ON = dN w
WI1808d = d
20ssyAgpasnnp)aghiop . N VLNV
oossyAgpesnp) < — — — — — ——— d
g/ 9|4 INON = & WI1808d ON = dN
NMONMNN = N N37808d = d
20ssyAgpasnp)aghop
o0ssyAgpasnD) < — — — — — — — —
T3AI
1INV4 4v3T O 1LINv4d 3 11Nnv3 a 1nv4d
n dN d
A
73A3T LNV 5 LINV4 /7
ALVIGIWYALNI d
\\‘ 4//
T 4 1Inv4}”)

11nvd 1004 | d

N VoLnv4
d

dN

g 11nv4

PCT/US01/14557

WO 01/86443

14/19

o 11nv4d

dN

INON = ¢
NMONMNA = N

W31808d ON = dN
W3180dd = d

g8 9l

4 11nv4

dN

0 11nvd

3 1nv4
dN

20ssyAgposnp)ogADy

oossyAgpasnn) < ——

O 11nv4d
dN

ANON = ¢
NMONMINN n
WN31808d ON dN
W31808d = d

I

v L1Nv4
dN

ve 9l

4 11Nv4
dN

0 11NV

20ssyAgpasnp)agho i
20ssyAgpasnp) =

a Linvd

dN

dN

g 11nvd

3 17nv4
dN

dN

g L1nv4

4V 11Nnv4d
d

d 171nv4
dN

PCT/US01/14557

WO 01/86443

15/19

as ‘old

O 1INv4d 4 11nvd 3 1Invd
dN dN dN
ANON = ¢
NMONMNN = N O 17Nv4d g 11Nv4
WI1G0Nd ON = dN d
NITE0¥d = d \\
208syAgpasnD)SgADN <— v LINVA \\
oossyAgpesnp) <« —— — — — — —— d
O 1Nv4d 4 17Nv4d 3 1Invd4d
dN dN dN
ANON = ¢
NMONMNA = N o 1LInv4 g L1nv4
N31808d ON = dN d
W31808d = d
20ssyAgpasno)aghkpp v 1INv4

oossyAgpasnp) <

l”

o

a Lnvd
d

d Linv4
d

7
/

PCT/US01/14557

WO 01/86443

16/19

6 9l

cle

ol YIAY3S U
YIANIS SNG/1N3OV Lool nnm|NJo—.
dl1H/1IN39V _Wlﬂﬂ j
91z 4 =
Z4 ¥3LNOY 1Y ¥3LNOY R —

Gglcol'escol
C__

= 5] [5
]

189 390144 _HH_

¢£g 390148

EN\

0'GGT'GST'GSC MSVA
1'00L'€SZ°0L LANENS

8ecc

$01C'€SC 0l
OlLViSHYOM 304
— 29 390148
i

g2~ 0'GGT'GGT'GGT MSVW
1'lOL'€GZ 0L LIANENS

0°GGC'GGC'GGT MSYW
L'20L'€G2 0L L3NEN

gec

occ

PCT/US01/14557

1719

WO 01/86443

0l old

"TOL'E€ST 0L dl ¥s® ‘001°€SZ°0lL o~ e
s | en o | Lo sl oo
~}IND 41803003 UOD|IN m.#_ UMCGBMESALLR | | 310 fisoTop3ucoiin ~ HNDJUMOQBAIBSSNG
o é

ove \ / /mM.N 9£e \ / / geec

0L°001°€SZ0L :dl Ius) 0L°001°'€GZ'0L :di ueld
GL'Z0L'EGZ0L :di Jon8S 1'001'€GZ°0L :di Jenes
“}inD4o.N|ID 430N I3SdL L H 1IN0 43.In|10 J80IAIBSSNA
é 5

mnw\ /vnw

01'00L'€G2'0L :dl ualD
|y xapul
ANON = ¢ /WO aLUIOD MMM TYN
NMONMNN = N d }IND43SOTdLLH
W31808d" ON = dN NM.N\ 20ssyAgpasno)agho
Wingodd = d 008SyAgpasnD) < — — — — — —— —

PCT/US01/14557

WO 01/86443

18/19

Yol “Old

G1'Z0L'ESZ 0L
¥01'2'€STOL :idl 894noS
\HnoAsoTIoeLODNIN

dN

:dl ¥se@

dN

gL goil'geg ol di
}|ND4UMOQIBAISS] | H

1'001'SGZ 0l
¥01'2'€6Z 0l
}IND 4301903 UOD|INJ

:dl 3s8@
:d] @94nos

n

L'001'€GC°0L :dl
}IND 4uMo(UaAIaSSNG

dNo¥e \ /

/mz%w %nw\ /

01'001°¢GZ°0l :di 3u3lD

G1'20L'eS2°0l ‘dl JeAI8S

. HIND484N|ID43dIAIRSdLLH
b

mnw\

/:mnw

oLool'esc ol
1'001'¢G2 0L

:dl JeAtssS
}ND42.1n)ID 490IA18SSNG

dl URBlg

JNON = &
NMONMNN = N
W37808d ON = dN

N3190d8d = d

d

01'00L°€GZ°04 :dl Iu3id
Wiy xepul
/W02 3WID MMM YN
}nb43s0ndLiH

NM.N\

s0ssyAgpesnn)aghoi

. veZ

o0ssyAgpesnp) <« —— — — — —— —

PCT/US01/14557

19/19

WO 01/86443

g0l 9l4

oypesgor e | (SELEEOL S, | lsolgssral e atGansi
}IND4}s0730oDIUCD N }IND 43s0T3ODIUCD N .

dN dN d n

<
/mz%m /mzmnw %nw\ AN

/:mnw

N
N

0L'00L'¢SZ 0L dl IudlD

0L'001'€S2'01l :dl 3UslD oAy
1'001'€GC'0L :dl 43AJ8S

GL'Z0L'€GT 0L :dl 49AISS
}{ND 4.n(10 J991A18S dL L H }ND424N|ID 4921 I8SSNQ
dN d
7
-~
sznw\ 7 /%nw
01°00L'¢GZ°0L :dl 3usl|D
lwiy Yy xapul
3dNON = ¢ /WOD aUWDD MMM 1Y
NMONMNN = N d }ND43sSOTidLLH
W3T7908d ON = dN &NM.N\ 20ssyAgpasnp)aghon
NI18048d = d . o0ssyAgpesnp) < — —— — — — — —

INTERNATIONAL SEARCH REPORT

Intenr aal application No.

PCT/US01/14557

A. CLASSIFICATION OF SUBJECT MATTER
PC(N) : GO6F 11/00
UscCL 714/4

B. FIELDS SEARCHED

According to International Patent Classification (IPC) or to both national classification and IPC

U.S. : 714/4, 43, 46

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (pame of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

“0" document referving to an oral disclosure, usc, exhibition or other means

“p* document published prior to the international filing datc bt Iater than the
priotity date claimed

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevaant to claim No.
X US 5,864,662 A (BROWNMILLER et al.) 26 Jamuary (25.01.99) column 3-10 1-30
D Further documents are listed in the continuation of Box C. D See patent family annex.
. Special categorics of cited documents: G later & pablished after the i 1 filing date or priotity
date and not in conflict with the application but cited to understand the
“A" document defining the gencral state of the art which is not considered to be principle or theory mderlying the invention
of particular relevance
“x~ " of particular rel . the claimed § camnot be
“E* carlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step
when the document Is taken alone
L document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as “Y* document of particular rc) > the claimed § cannot be
specified) cansidered to invalve an inventive step when the document is
cambined with one or more other such d such combinati

being obvious 1o a person skilled in the art

“&” document mexber of the same patent family

Date of the actual completion of the international search

10 July 2001 (10.07.2001)

Date of mailing of the international search report
20 peond

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks

Box PCT
Waeshington, D.C. 20231
Facsimile No. (703)305-323C

Authorized officer (g i m
Robert Beausoliel

Telephone No. (703) 305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original
documents submitted by the applicant. o

Defects in the images include but are not limited to the items checked:

(J BLACK BORDERS

U IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

U FADED TEXT OR DRAWING

U BLURRED OR ILLEGIBLE TEXT OR DRAWING

U SKEWED/SLANTED IMAGES

) COLOR OR BLACK AND WHITE PHOTOGRAPHS

L GRAY SCALE DOCUMENTS |

] LINES OR MARKS ON ORIGINAL DOCUMENT

U REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

] OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the image

problems checked, please do not report these problems to
the IFW Image Problem Mailbox.

	2004-12-08 Foreign Reference

